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Abstract 

This paper addresses the problem of extracting traffic patterns from noisy and incomplete 
sensor data. We introduce an approach that combines the output of (particle filter based) 
tracking filters with GIS techniques. While tracking filters are standard tools for generating 
estimates of the position and velocities of individual objects over time, GIS techniques are 
used to extract geographic patterns from these estimates. GIS techniques also allow the 
integration of prior knowledge, such as coastlines and bathymetry, to enhance the quality of 
the extracted patterns. The approach has been applied to maritime traffic surveillance using 
report of the Automatic Identification System (AIS), which may be subject to GPS errors, 
spoofing, time delays and periods of missed detections. The results are continuous vessel 
tracks indicating each vessel’s route, even when the update rate of messages is significantly 
slower. 

1 Introduction 

There is an increasing need for an enhanced situation awareness of maritime traffic both for 
open sea and coastal areas. The requirement for maritime surveillance and monitoring is to 
foster safety and security of maritime traffic, e.g., to avoid collisions and other hazards, and 
to quickly detect accidents, oil spills, and illegal activities. Multi-sensor fusion and tracking 
can significantly enrich the consolidated surveillance picture, and provide an effective basis 
for anomaly detection processing (CARTHEL et al. 2007). 

 The extraction of traffic patterns from sensor data has attracted increasing attention with 
applications in different environments. In particular, for maritime surveillance, traffic 
patterns can be used for vessel route prediction and anomaly detection. Even when 
collaborative report data, Automatic Identification System (AIS), is available, traffic pattern 
extraction can be impeded by sensor errors, spoofing, and periods of missed detection due 
to limited coverage, terrain masking, or technical issues. The extraction and update of 
tracks of individual objects using noisy and erroneous sensor data is the task of tracking 
filters (BAR-SHALOM et al. 2004, KOCH 2010). From the time series of a large set of 
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individual tracks, traffic patterns can be extracted (RISTIC et al. 2008, VESPE et al. 2012, 
PALLOTA et al. 2013, PEREZ et al 2009, AARSÆTHER 2011). 

This paper describes an extended version of the road map extracting approach discussed in 
TZAVELLA & ULMKE (2013), which here is applied to the problem of maritime pattern 
extraction. 

2 Input Data and Data Processing 

The area under investigation is a marine area of 6156 km2 (54 km x 114 km) of the Adriatic 
sea, outside of Venice in Italy and the AIS data, provided by the EU-funded project 
NEREIDS (https://www.nereids-fp7.eu) are spread in this area (see figure 1). The AIS data 
were at first visualized in an ArcMap environment as georeferenced points (longitude and 
latitude). They are also carrying information on the speed of each vessel, COG (Course 
Over Ground), SOG (Speed Over Ground), as well as date and time of message generation. 
However, we only used the position and the dates of message propagations from the AIS 
data provided and only for three data vessels (see figure 2). The positions of these vessels 
were ground truth data for further investigation and were selected taking into account their 
MMSI (Maritime Mobile Service Identity) and the date of signal arrival. An MMSI number 
is a unique identifier assigned to a boat. Only one number is assigned for all applicable 
electronics on the vessel, such as an AIS transponder etc. 

Fig. 1: 
Absolute bathymetry of the under 
study area and the AIS data provided 
by NURC 
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Fig. 2: The three vessels selected as ground truth data 

To test if the proposed methodology is working in cases of missed detections, we decreased 
the update rate of messages received from vessels 2 and 1 (larger gaps in between the 
messages). The messages seem to propagate significantly slower than those from vessel 3 
(see figure 2). 

3 Methods for Sea Lane Extraction 

3.1 Particle cloud extraction – First part of the algorithm 

In this work we apply a sequential Monte Carlo technique, also known as Particle Filter, 
and more precisely the “sequential importance resampling (SIR)” algorithm (GORDON et al. 
1993). Particle filters allow the treatment of highly non-linear target and/or measurement 
models. The result of the particle filter is a time series of a particle cloud  that serves as an 
estimate for the target state (position and velocity) at each instant of time where a filter 
update has been performed, typically after each measurement (message propagation to the 
AIS). From the particle cloud, the coordinates of the underlying path are estimated as 
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described below. The technique is applied to simulated sea lane traffic in different scenarios 
such as straight lanes, cross section, and turns. The messages are generated using typical 
parameters for vessels. Then we extract the positions of each particle for every time step 
into a matrix. Specifically, the results of this part of the algorithm are the particles (500, in 
this example) spread around each position of the ground truth, and furthermore a cloud of 
particles indicating the area of sea lane / path existence (see figure 3). 

 

Fig. 3: Particle clouds extracted for each vessel indicative of sea lanes followed by them 

3.2 Sea lane extraction – Second part of the algorithm 

The aforementioned clouds of particles are used as input data for the second part of the 
algorithm which involves different kinds of GIS methods (see figure 4). The clouds of 
particles, created by particle filtering of each ground truth in different scenarios, are added 
to the ArcMap (version 10.1) environment by displaying their positions indicated by 
longitudes and latitudes (X and Y). 
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Fig. 4: The methodology followed in a GIS environment for sea lane extraction 

In general, kernel methods estimate densities within a neighborhood around each output 
raster cell (in our case a circular one). Conceptually, a smoothly curved surface is fitted 
over each particle. The surface value is the highest at the location of the ground truth points 
and diminishes with increasing distance from them, reaching zero at the Search radius 
distance of 2 kilometers from the ground truth points. The volume under the surface equals 
the population field value for the point. The population field could be used to weight some 
features higher than others, depending on their meaning, or to allow one point to represent 
several observations. The density at each output raster cell is calculated by adding the 
values of all kernel surfaces where they overlay the raster cell center, and can be presented 
also by percentage of the total amount. The kernel function is based on the quadratic kernel 
function described in GIBIN et al. (2007, 76, eq. 4.5). 

This resulting raster file is indicative of areas with high density of particles and for this 
reason the use of a threshold is essential to make the methodology more robust and suitable 
for different scenarios. The threshold for this algorithm was identified via the “Standard 
Deviation Classification” excluding the value of zero, resulting in a raster indicative of the 
density of the particles in each under study area, classified in 5 zones/classes (see figure 5).  

The threshold is obvious in figure 6, where the first class break of the classes/zones of 
densities of particles is the “critical value” since it divides the density into two critical 
zones: One with 90% of particles on the right side of the critical value and the other with 
10% on the left side of it. For further analysis we keep these two zones and we create a 
binary raster representing the areas of higher and lower density whereas the latter will not 
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be useful for further analysis. This binary raster resulted after reclassifying the raster of 
KDE with the tool “Reclass” in the Spatial Analyst toolbox of ArcMap 10.1. The density 
zone of the higher percentage of particles was converted into a polygon shapefile. Any 
holes (areas of NODATA – no provided information) observed in the polygon were filled 
through a set of functions in “ET Geo Wizard”, which ensures topological correctness of a 
polygon feature data set. 

 

Fig. 5: Kernel density rasters of 100 m. Spatial analysis for each vessel visualized with 
the bathymetric data of this area. 
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Fig. 6:  Histogram of standard deviations from the mean value of particles (dashed line).       

The red line is the “critical value”. 

In addition, we spatially selected and excluded particles existing in an area of less than 15-
20 meters of depth, where vessels in this study area cannot exist. This exclusion of particles 
reduces the computation time and limits the probability density to regions that are feasible. 
In a last step the “ET Geo Wizard” and specifically the function “Create Centerline” was 
used to create a center line inside the polygon. This line is passing through points which are 
equally distant from each side of the polygon and is the path that we are aiming at. The only 
restriction of the algorithm of center line extraction is the selection of the minimum and 
maximum width of the polygon (higher probability detection zone). We used as minimum 
width the value of 50 meters and maximum width the value of 1500 meters, which are 
approximately the min. and max. width of sea lanes concerning the width of existing 
vessels. For a better fitting result with a smooth extracted sea lane that is close to the 
ground truth points, we used the smoothing method of “Bezier curve” provided by the 
function “Smooth”. This line can now be considered as our extracted sea lane, which is 
close to the chosen vessel trajectories’ positions (close to the ground truth points depicted 
in figure 8). 

4 Results 

Validation ensures that the model meets its intended requirements in terms of the methods 
employed and the results obtained. The ultimate goal of model validation is to make the 
model useful in the sense that the model addresses the right problem, provides accurate 
information about the system being modelled, and to make the model actually used. The 
results of this methodology are the sea lanes followed by the three selected vessels. The 
validation will occur after visualization of the data (extracted sea lanes and ground truth 
positions of the selected vessels). As shown in figure 7, these extracted sea lanes are very 
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close to the ground truth data, which means that the proposed methodology is successfully 
implemented giving the desirable results.  

 
Fig. 7:  Extracted sea lanes matching the trajectories of vessels which were selected as 

our ground truth data. 

A closer look at the cases with missed detections / delayed received messages (vessels 1, 2) 
reveals in figure 8 that the methodology suggested in this paper is working well since the 
result is a continuous sea lane. Even after decreasing the update rate of signal propagation 
(one message too far from the next one) the model was able to give a continuous line, 
which in this case study is representative of a sea lane, without any discontinuities.  
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Fig. 8: 
Continuous yellow lines / extrac-
ted sea lanes in cases of missed
detections for vessels 1, 2 (dis-
tance from one signal propagation
to another more than 4km on the
left) in comparison with typical
(every 2km) signal propagation
from the vessel 3 on the right. 

5 Conclusion and Outlook 

While the Terrestrial AIS service provides near real-time updates of vessel positions at the 
areas covered by the coastal AIS receivers’ network, the SAIS (Satellite AIS) service 
provides position updates less often, at intervals that may vary from a few minutes up to 
several hours. On average, several SAIS updates per day should be expected for most 
vessels sailing the oceans. In such cases, the combination of particle filtering of self-
reported AIS data from targets moving in a marine area and GIS methods seem to be a 
powerful tool for the extraction of sea lanes as well as in cases of missed detections. The 
reduction of the amount of particles used by the proposed methodology leads to cost 
minimization and to a better accuracy of the results (extracted sea lanes close to the ground 
truth points of the chosen vessels’ trajectories). We also achieved a holistic and successful 
exploitation of tracking results and data information, since the algorithm described in this 
paper is open to several extensions (e.g. automatization, multiple target tracking etc.). The 
current limitations are the prior knowledge of the environment of the area under 
investigation, the bathymetry of the area (bathymetric raster), or the already existing sea 
lane network within ports, passages, canals etc.  Another advantage of this methodology is 
its high degree of automatization.  
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